Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(65): 14838-14843, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32501570

RESUMO

Oxidation of protein methionines to methionine-sulfoxides (MetOx) is associated with several age-related diseases. In healthy cells, MetOx is reduced to methionine by two families of conserved methionine sulfoxide reductase enzymes, MSRA and MSRB that specifically target the S- or R-diastereoisomers of methionine-sulfoxides, respectively. To directly interrogate MSRA and MSRB functions in cellular settings, we developed an NMR-based biosensor that we call CarMetOx to simultaneously measure both enzyme activities in single reaction setups. We demonstrate the suitability of our strategy to delineate MSR functions in complex biological environments, including cell lysates and live zebrafish embryos. Thereby, we establish differences in substrate specificities between prokaryotic and eukaryotic MSRs and introduce CarMetOx as a highly sensitive tool for studying therapeutic targets of oxidative stress-related human diseases and redox regulated signaling pathways.


Assuntos
Técnicas Biossensoriais , Humanos , Metionina , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Especificidade por Substrato
2.
J Org Chem ; 83(19): 11839-11849, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30180574

RESUMO

The determination of the absolute configuration of chiral alcohols and amines is typically carried out with modified Mosher methods involving a double-derivatization strategy. On the other hand, the number of robust and reliable methods to accomplish that goal using a single derivatization approach is much less abundant and mainly limited to secondary alcohols or primary amines. Herein, we report a conceptually novel strategy to settle the most likely absolute configuration of a wide variety of substrates and chiral derivatizing agents following a single-derivatization experiment coupled with quantum calculations of NMR shifts and DP4+ analysis. Using an ambitious set of 114 examples, our methodology succeeded in setting the correct absolute configuration of the substrates in 96% of the cases. The classification achieved with secondary alcohols, secondary amines, and primary amines herein studied was excellent (100%), whereas more modest results (89%) were observed for primary and tertiary alcohols. Moreover, a new DP4+ integrated probability was built to strengthen the analysis when the NMR data of the two possible diastereoisomers are available. The suitability of these methods in solving the absolute configuration of two relevant cases of stereochemical misassignment ((+)- erythro-mefloquine and angiopterlactone B) is also provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...